Implementing a CPS Compiler for Functional Languages
with Zero Overhead Exception Handling

Ramén Zatarain Cabada,' Ryan Stansifer,? and
Maria Lucia Barrén Estrada’

'Instituto tecnolégico de Culiacan, Av. Juan de Dios Batiz &/, Col. Guadalupe, Culiacén,
Sin. CP 80220 Mexico
rzatarain%.itculiacan.cdu.mx mharron /i fit.cdu

?Florida Institute of Technology. 150 W. University Blvd. Melbourne, FL. 30901 USA
ryan@cs.fit.edu

Abstract. We have implemented a basic CPS compiler for functional languages
with exception handling. With it we were able to implement a new approach to
exception handling and compare it side-by-side with the approach taken by the
SML of New Jersey compiler. The new approach uses two continuations in-
stead of the one continuation. One continualion encapsulates the rest of the
normal computation as usual. A sccond continuation is used for passing the ab-
normal computation. The new approach and an experiment were shown in
[9.10] where we concluded that programs with exception handling using our
new approach do not produce overhead. In this paper we show more details
about the compiler. This includes lambda, CPS and abstract machine code gen-
cration. At the end, we show some results of the experiments.

1 Introduction

Functional languages focus on data values described by expressions (built from function
applications and definitions of functions) with automatic evaluation of expressions. Pro-
grams can be viewed as descriptions declaring information about values rather than in-
structions for the computation of values or of effects [11]. ML [8] is a general-purpose
functional programming language designed for large projects. Every expression has a
statically determined type and will only evaluate to values of that type. Standard ML of
New jersey (abbreviated SML/NJ) is a compiler and programming environment for ML
written in ML with associated libraries, tools, and documentation (3). The compiler
translates a source program into a target machine language program in several phases. .

Compilers of imperative languages like Java, Ada, and C++ implement exception
handling without imposing overhead on normal execution (4, 5, 6]. When a program
defines an exception handler, the runtime performance of that program wguld be the
same without exception handler definition. We can say that there is no runtime pen'fahy
for defining an exception handler, which is never used. In other words, no r}mumc
overhead occurs in the case in which no exceptions are raised. However, compilers of

4600 Ramon Zatarain Cabada, et al.

functional languages like SML/NJ or CAML (7] produce code that has exceptiop.
handling overhead [10].

2 A Model of CPS Translation

The middle part and key transformation in some functional language compilers is the
conversion to CPS (continuation-passing style) language. We use CPS as our interme-
diate representation in our functional language compiler (figure 1). The compiler
first translates a source program written in lambda code into CPS code. Then, it trans-

lates the CPS code into a one-function CPS program named flat CPS. Finally, flat CPS
code is translated into abstract machine code (AMC).

Source Program
{Lambda code)

!

Translation
To CPS

CPS code

'

Translation
To Flat CPS

v

Flat CPS code

Translation to
Abstract MC

AMC

Fig. 1. Overvicw of the compiler

2.1 The Lambda Language

Our source language is written using lambda code. The next SML code shows the

definition of a lambda expression. We start here to avoid issues of parsing a concrets
source language.

Implementing a CPS Compiler for Functional Languages with Zero ... 461

datatype lexp=

VAR of var | INT of int |STRING of string
|FN of var * lexp

IFIX of var list * lexp list * lexp
IAPP of lexp * lexp

IPLUS |SUB |IMULT |LESS |EQ
IMAKEREF |RAISE of lexp

IHANDLE of lexp * lexp

ICOND of lexp * lexp °* lexp

In this case, each value (a constructor) of type lexp can represent:

A variable (VAR), an integer (INT), or a string (STRING).

An anonymous (lambda) function (FN).

A function dcclaration (FIX) where function names (var list) are bound to
anonymous functions (lexp list) under the scope of a lambda expression.

A function-calling construct (APP).

A sct of primitive operations for making arithmetic (PLUS, SUB, and
MULT); comparisons (LESS, and EQ); and creation of references to memory
(we use them when exceptions are declared).

e A primitive operation to evaluate an expression of type exception and to
throw a uscr-defined or system exception (RAISE).

e A primitive opecration HANDLE that evaluates the first argument, and if an
exception is raised, then applies the second argument (handler) to the excep-
tion.

e A primitive operator COND used to test conditions EQ and LESS. Besides

normal testing, this primitive is very important when a HANDLE tests for a
given exception.

2.2 The CPS Language

The CPS language used in our translator has three big differences with respect to those
traditional compilers, which use also CPS as an intermediate representation [2):

e Every function has a name.

e There is an operator for defining mutually recursive functions (instead of

fixed point function).

e There arc n-tuple primitive operators.
Besides that, we use the ML datatype declaration in order to prohibit ill-formed ex-
pressions. One important property of CPS is that every intermediate value of a compu-
tation is given a name. This makes easier the translation later, to any kind of machine
code. For example the SML expression 289 - (17 * 17) is translated to

PRIMOP (*, [INT 17, INT 17], ["w2%],

{PRIMOP (-, [INT 289,VAR "w2"],
("wl"), [APP (VAR "k", [VAR "w1"])])))

in CPS notation, where wil and w2 are intermediate names produced by the translator.

462 Ramon Zatarain Cabada. et al.

The next SML code shows the definition of a CPS expression.

datatype primop=

gethdlr |sethdlr | + | - | * | < Jequal |makeretf

type var=string
datatype value =

VAR of var |INT of int |STRING of string

datatype cexp=

APP of value * value list
|FIX of (var * var list * cexp) list * cexp
| PRIMOP of primop * value list * var list * cexp list

A primitive operator can be:

gethdlr and sethdlr. Both are used for handling exceptions. The operator
gethdlr obtains the current exception handler (or saving the old handler), and
sethdlr updates the store with a current handler (re-install a new handler).

+, -, *. Arithmetic operators for adding, subtracting, and multiplying two ar-
guments.

<, equal. Testing (comparison) operators for less than and equal to.

makeref. This operator is used to create a reference (a pointer) to memory
(specially for declaring an exception).

Datatype value is defined as all the different kind of atomic arguments that can be

used in a CPS operator. A value or argument can be a variable (VAR), an integer
(INT), or a string constant (STRING).

Our CPS language has just three different kinds of expressions. They are:

APP. It is used for calling a function (whose name is of type value), passing
one or more arguments (using a list of values).

FiIX. Like we established before, in CPS all functions have a name. There are
no anonymous functions. FIX is used to define a general-purpose mutually
recursive function definition. The syntax of FIX defines a list of zero or more
functions, with a name (type var), arguments (type var list), and bodies (type
cexp). All of these functions can be called (using the APP operator), from
each body of the function or from the main body of the FIX expression (type
cexp).

PRIMOP. This stands for primitive operator. All primitives like handling
exception, arithmetic, testing, and references, are built by using this construc-
tor. The first field is the primitive name (primop type), the second and third

fields are used for arguments and/or result names, and the fourth field is the
continuation expression of the primitive operator.

2.3 The Abstract Machine Code (AMC)

Continuation-passing style is used because it is closely related to Church’s lambda
calculus and to the model of von Neumann, here represented by our target abstract
machine language (see figure 2). Each operator of the CPS corresponds to one opera-

Implementing a CPS Compiler for Functional Languages with Zero ... 463

tor in our targel abstract machine code. In order to test the performance of the CPS
code we implemented an abstract machine.

The machine has an instruction sct, a register set and a model of memory, and exe-

cutes programs wrilten in abstract machine code. Fi i
_ . Figure 2 illustrates the com
of the abstract machine. ¢ ponents

CPS Program

AMC
translator

Memory AMC Program

Y

AMC code —
K—— Simulator Result

Registers

Fig. 2. Components of the abstract machine

During the compilation process. lambda expressions are translated into corresponding
CPS expressions. Then, CPS expressions are translated into abstract machinc code.
The AMC is essentially an assembly-language code, and like any abstract machine it
has some advantages with respect to a real machine: first, creating a simulator for the
abstract machine is no big deal; and second making performance analysis is very con-
venient (we can include code for performance analysis inside the machine). The next
SML code shows the definition of the format for AMC instructions and expressions.

datatype instruction =
LABEL of string
| JUMP of string
ICJUMP of relop * exp * exp * string * string
JLOAD of exp * exp’
ISTORE of exp * exp

464 Ramoén Zatarain Cabada, et al.

and

and

|ADD of exp * exp * exp
|SUB of exp * exp " exp
IMUL of exp * exp " exp

exp=
MEM of string
INAME of string
|CONST of int
ISTRING of string
IREG of int

relop= EQ | LT

An abstract machine instruction can be:

A label that represents an address. Whenever the simulator finds a label it
just increases the program pointer, in order to read the next instruction,
A jump instruction is an unconditional branch to any label.

A CJUMP is a conditional jump to one of two labels, depending of the result
of the test.

A load from memory into a register.
A store from a register or a string into a memory address.

Arithmetic operations to add, subtract, or multiply two values, producing a
result, which is stored into memory.

and a expression can be:

An address of memory represented by a name (string) of a register, variable,
etc.

e The name of a label, which represents an address.

e A constant for an integer data.

e A string data.

e Aregister (registers have a unique number).
Example:

We illustrate all the different code representations with a complete program in SML,
Lambda, CPS, and abstract machine code,

SML
let
in

end

fun f(x)= x*5

f£(4)

LAMBDA

FIX(("£"],

(FEN ("x",APP(b.MULT,RECORD (VAR "x",INT S51))1],
APP (VAR "f",INT 4))

Implementing a CPS Compiler for Functional Languages with Zero ... 465

CPS

FIX
([(-fﬂ' lllxtl' -vlﬂ]'
PRIMOP (*, (VAR "x",INT S], ["w2"],
(APP (VAR "wl™, [VAR "w2"])]))]),
FIX
([("r3", ["x4"],APP (VAR "initialNormalCont"™, (VAR "x4"]))],
APP (VAR "f", [INT 4,VAR "r3"])))

AMC

0 LOAD Const 4,Reg 1

1 LOAD Mem r3,Reg 2

2 JUMP Name f

3 LAB £

4 STORE Reg 1,Menm x

5 STORE Reg 2,Mem wl

6 MUL Mem x,Const 5,Mem w2
7 LOAD Mem w2,Reqg 1

8 JUMP Mem wl

9 LAB r3:

10 STORE Reg 1,Mem x4

11 LOAD Mem x4,Reg 1

12 JUMP Mem initialNormalCont
13 LAB end:

The code in the AMC performs the following operations:

e Instructions 0 and | pass the parameters in registers 1 and 2.

e Instruction 2 is a jump to label f.

e Instructions 4 and 5 storc both paramcters (constant 4 and register 3) in
memory.
Instruction 6 multiplies first paramcter (constant 4) by constant 5.
Instruction 7 passes as a paramcter the result of the multiplication in register
1.
Instruction 8 is a jump to addrcess r3 (the value of variable wl).
Instruction 10 stores the parameter into memory address x4.
Instruction 11 passes the value of x4 into register §. This register always
keeps the final result.

® Instruction 12 jumps to the initial continuation initialNormalCont, which is
a fixed address or constant in memory that represents the end of any program
exccuted in the abstract machine.

2.4 A Simulator of the AMC

The simulator is a program, which simulates a real computer. It is a picce of softvzare
that runs an AMC program. In order to simulate a real computer it uscs three data
structures, which mimic a memory for data values, a memory for code, and a set of
registers (sce figure 2). It also uses two variables that keep the current program pointer
(PC) for the code, and the current stack pointer (SP) for the data. The main routine of
the simulator is a recursive function that keeps reading instructions from the AMC

466 Ramoén Zatarain Cabada, et al.

program. Next, we describe the algorithm used for the simulation of an AMC pro-
gram.

Input: An AMC program, which is kept as a list of instructions.
Output: A value or result after executing the AMC program.
Mcthod:
e Convert the instructions kept as a list into a different data structure: an array.
The array is more convenient for the simulation.
e Initialize PC and memory pointers with initial address. PC points to first
AMC instruction and memory pointer to address zero in memory.
e Start main function, which keeps reading instructions pointed by PC, execut-
ing the operations (storing, loading, jumping, adding, etc.), and updating the
value of PC and memory.

3 A New Approach for Implementing Exception Handling

Implementing exception handling in SML/NJ and OCAML produce runtime overhead
[10]. The implementation of our compiler generates also exception-handling overhead
[9]. We have implemented a new technique for zero overhead exception handling. A
more detailed explanation of the source of that overhead can be found in [9,10].

3.1 Experiments

This section presents one example of the experiments we made in order to test the
performance of the new technique.

In section 2.4 we gave an cxplanation of the implementation of a simulator for a real
machine. The simulator “executes” a program in abstract machine code, getting then,
information like the number of instructions performed by that program. The abstract
machine code can be produced by three different compilers. One using the original ap-
proach (the method used in the SML/NJ compiler), a second that uses a two-
continuations approach, and a third that uses a one-continuation-displacement approach
[9]. Some comparisons in the experiments are between programs that declare and use
exception handlers; and some are between programs that declare and never use exception
handlers which is, of course, the most important situation for our research. All measure-
ment in the experiments arc made by counting the number of instructions executed by the
simulated programs.

The program for the experiment contains two functions: f and run. At the beginning
function run is called passing a value of zero as a parameter. Function run loops 10
times (we later increase this value), calling function f and making computations. Th.c
result of the computation in function f never raises an exception so the handler ovil is
never evaluated. The program was translated by three different compilers: the SMWJ
compiler (old), our compiler with the one-continuation approach, and our compiler with
the two-continuation approach

Implementing a CPS Compiler for Functional Languages with Zero ... 467

SML code
let
fun f(n)=n*n handle ovfl=>n
fun run{x)=if x>10 then £(17) else (run(x+f(17)-288})
in
run (0)
end

We showed in [9] that this program produces exception handling overhead. Figures 3, 4,
and S illustrate the performance of the program on its four diflerent versions: with an
exception handler in function f, with no exception handler (for the old and new ap-
proach), and with an exception handler using the two continuation approach {9,10]. The
graphs show that the curves of version 1 and version 4 are “ticd” or follow cxactly the
same direction. That means, that there is no exception handling overhead in the program
that uses the one-continuation-displacement technique.

H 30

20
: 18

10

6 3 k- - I
10 50 100 500 1000
STEPS

: e wath handler - nNo handler/meaw approach = - two-cont

Fig. 3. Performance of program from 10 to 1000 steps

. —— . — " —— i — —— —— - —— . — e o e —— —_—

BOODO! 5 it - T -
25000
20000
: 15000
: 10000
' 5000

e
(0] e e — —————— - - e e e e

10 50 100 $00 1000
STEPS in thousands

: . '\Mm hhandlor-_- -no handlar/naw a‘;;pmnch oyl Mo-com i

Fig. 4. Performance of program from 10000 to 1000000 steps

468 Ramon Zatarain Cabada, et al.

30000 = e e e e e ctme —— — e e e e ——— tmam e . A . t
25000 !
20000 |

n

15000
10000
5000 -

STEPS

|

|

T :

O A

| —— with handler —e-— no handler/new approach —a— two-cont |

Fig. 5. Pcrformance of program from 10 to 1000000 steps

4 Conclusions

We have implemented a basic CPS compiler for functional languages with exception
handling. With it we were able to implement the new approach to exception handling
and compare it with the approach taken by the SML of New Jersey compiler. Our
model of translation and execution allows a programmer (or student/teacher) to write,
translates, and executes programs in a source functional language (an extended
lambda language) and a target abstract machine language. The model can be seen as 2
framework that can be used to execute programs, allowing studying a wide range of
performance assessments. Last, we designed and implemented a new technique where

the entire overhead is moved from the normal flow of control to the code executed
when an exception is raised.

References

\. American National Standard Programming Language PL/I. ANSI X3.53-1976. Amcrican
National Standards Institute, New Jork.

2. Andrew W. Appel. Compiling with Continuations. Cambridge University Press. Cam-
bridge, England, 1992. .

3. Andrew Appel and David B. MacQueen. A standard ML compiler. In Gilles Kahn. editor.
Functional Programming Languages and Computer Architecture. pages 301-324.
Springer-Verlag, Berlin, 1987, Lecture Notes in Computer Science 274: Proceedings of
Conference held at Portland. Oregon.

4. Baker, T.P. and Riccardi, G. A. Implementing Ada Exceptions. /EEE sofiware, Scptem”
ber 1986, 42-5.

10.

Implementing a CPS Compiler for Functional Languages with Zero ... 469

Dinechin, C. de. C++ Exception Handling. JEEE Concurrency, Vol. 8, No.4, October-
December 2000, Pages 72-79.

Venners, B. Inside the Java 2 Virtual Machine. McGraw-Hill, second edition,
1999.

Leroy (Xavier), Rémy (Didier), Vouillon (Jérdme) et Doligez (Damien). — The
Objective Caml system release 2.04. — Rapport technique, INRIA, décembre
1999.

Milner, R., Tofte, M., and Harper Jr., R.W. The Definition of Standard ML. MIT Press,
Cambridge. Massachussctts, 1990.

Ramon Zalarain. Design and Implementation of Exception Handling with Zero Overhead
in Functional Languages. PhD Dussertation, Flonda Institute of Technology. 2003.
Ramon Zatarain and Ryan Stansifer. Exception Handling for CPS Compilers. Proceed-
ings of the 41" ACM Southeast Regional Conference (ACMSE 'N3), Savannah, Georgia.
Reade, Ch. Elements of Funciional Languages. Addison-Weslcy, 1989.

